Off the beaten track - West Cape Howe National Park

West Cape Howe National Park is a national park between Albany and Denmark.

Image Credit: Jordan Cantelo

Image Credit: Jordan Cantelo

Torbay Head, the most southerly point of the mainland of Western Australia, is situated within the park.The park is abutted against the coast of the Southern Ocean and takes up approximately 23 km of the coastline between Lowlands Beach and Forsythe Bluff.

The park began as being vested in the Shire of Albany in 1977 for the purposes of recreation. By 1985 the area was gazetted as C Class Reserve after agreement between the shire and vested in the National Parks and Nature Conservancy Authority. Following the addition of an extra 41 ha (100 acres) that was a timber reserve along the northern boundary the park was given an A Class status in 1987. The park is now a single reserve (26177) and is made up of an area of 3,517 ha (8,690 acres). The rare and ancient Main's assassin spider, currently listed as threatened, was found to inhabit the park during a survey conducted in 2008.

The park is home to a range of habitats including karri forest, coastal heath and wetlands each of which support a diverse array of vegetation and plant species. The area around Lake William supports a dense sedge scrub and rare species such as Amperea volubilus and an unnamed species of Melaleuca. The Albany Pitcher Plant, Cephalotus follicularis, is also found in the park.

Due to the sandy nature of many of the tracks, much of the park is accessible only to four-wheel drive vehicles, although all vehicles may reach the popular Shelley Beach where a campground is located. Shelley Beach also has a look-out, toilet and barbecue launching facilities for hang-gliders. The nearby Golden Gate Beach is also a popular location for surfers.

Western Australia's long-distance walking trail, the Bibbulmun Track passes through the park. The park has many facilities for bushwalkers, with a 15 kilometres return trip spur-trail from the track to Torbay Head and a boardwalk section of the track In the West of the park, there is an overnight shelter for walkers that sleeps 12-15 persons, named 'West Cape Howe Campsite'.

Macropod - Western brush wallaby

The western brush wallaby (Macropus irma), also known as the black-gloved wallaby, is a species of wallaby found in the southwest coastal region of Western Australia. The wallaby's main threat is predation by the introduced red fox (Vulpes vulpes). The IUCN lists the western brush wallaby as Least Concern, as it remains fairly widespread and the population is believed to be stable or increasing, as a result of fox control programs.

Image Credit: Perth Zoo

Image Credit: Perth Zoo

The western brush wallaby has a grey colour with distinctive white colouring around the face, arms and legs (although it does have black gloves as its alternative common name implies). It is an unusually diurnal macropod that eats mainly grass.

Although quite small, the western brush wallaby's coloring resembles the larger kangaroos of the region. The western brush wallaby's head and body length usually falls around 1.2 m. Their tail length, which ranges from 54–97 cm, is proportionally long to their smaller body size. The adult western brush wallaby weighs anywhere from 7.0-9.0 kg. Their coloring consists of a pale to mid gray coat with a distinct white facial stripe. Other distinct features include black and white ears, black hands and feet, and crest of black hairs on the tail.[6] The size of the male and female are quite similar.

The western brush wallaby is a herbivore, although there is disagreement on whether it is a browser, eating mainly leaves, or a grazer, eating mainly grass, as there has not been extensive research done. It is a diurnal animal, which is somewhat unusual for macropods, and is active during dawn and dusk.

Like all others in the family Macropodidae, the western brush wallabies are characterized by powerful hind limbs and long hind feet. It runs by weaving or sidestepping, utilizing its powerful hind-limbs, while keeping its head low and its tail extended straight, making it very speedy.

Although decades of research have been done in regards to the reproductive behavior of the western brush wallaby, their habits are relatively unknown. The young are usually born during April and May. Females, like all marsupials, have a well-developed forwardly opening pouch containing four teats.The female gives birth to one young a time, with two rarely occurring. Gestation lasts from three to five weeks. After birth, the young enter the lactation period for seven months, until October or November. After vacating the pouch the young wallaby goes through a weaning period during which it will stick its head in the pouch temporarily attach itself to a teat.

We need to tighten the law to protect wildlife homes

Image 20150710 16769 cg2oaw
The critically endangered Leadbeater’s Possums is just one of Australia’s animals threatened by habitat loss. Greens MPs/Flickr, CC BY-NC-ND
Don Anton, Griffith University

Three recent reports make clear that we should be saving habitat in order to save species. It is pretty simple. Destroy a species’ habitat and you destroy its home.

The first report was issued last week by the Australian Conservation Foundation (ACF), Birdlife Austrlia and Environmental Justice Australia*. Its take away message is that in Australia we will do little to halt the continuing threat to and extinction of species here until we get serious about providing effective legal protection to habitat.

The second report accompanied an update of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species at the end of June. It highlighted that the main threat to 85% of the 22,784 known and assessed species threatened with extinction (1,839 in Australia) is the loss and degradation of habitat.

The third study, also published at the end of June, was even more disturbing. It found that over the last century the extinction rate for many species was 100 times faster than usual and that we are heading into a human-created sixth mass extinction on Earth. It blamed this on habitat destruction, as well as climate change, trade, and pollution.

Without an adequate home, a species cannot survive. Of course, stressing the need to protect habitat is much easier said than done. Why is that? It largely comes down to three obstacles that have been intractable so far.

Where threatened species are found in Australia. Environmental Resources Information Network (ERIN), Department of Environment

Protecting species, but not their homes

First, the law in Australia does not protect habitat per se. It only protects species. It does this through a process of listing and then making it an offence to kill or take the listed species. Listing species alone, however, does nothing to protect habitat.

It is true that it is possible to list critical habitat under Commonwealth law and various state laws. That has largely been ignored. The problem has been a persistent lack of political will.

Politicians are reluctant to list habitat because it means that parcel of land will be off limits to development. That is something most politicians seek to avoid in pursuit of short-term economic benefits.

Second, protecting habitat is subject to politics. Even when a species is listed, it is possible for governmental decision-makers to exercise discretion and permit a development, even if it will threaten the species.

A decion-maker will be required to consider a number of factors (ordinarily environmental, economic, and social impact) in exercising his or her discretion.

However, if these factors are appropriately ventilated, then the law allows the discretion to be exercised against a threatened species. What we have in these sorts of cases is environmental law without necessarily environmental protection.

It becomes a matter of right process and the only remedy for those dissatisfied when the process has been followed is at the ballot box.

Third, protecting habitat is economically tough. David Attenborough, the famous environmental documentary presenter, has highlighted that humans are in competition with the other species for space on this finite planet.

He correctly observed that it will take a great deal of willpower and economic strength to fix things. The questions for us is, do we have what it takes? Or, will we leave future generations with an environment less rich, less diverse than the one we inherited?

Tighter regulation, more money

The ACF report recommends that in Australia we start by improving recovery plans for species. In particular, ACF maintains that recovery plans must contain “measurable and targeted restraints on the destruction of threatened species habitat and outline restorative outcomes that any approval decisions must work toward”.

The ACF recognises this will not be cheap. It calls for an annual investment of A$370 million to implement recovery plans and purchase land for protected areas.

To follow the recommendation would be to start to seriously protect habitat. It would only be a start though.

Much would depend on whether the new recovery plan arrangements deprived decision-makers of discretion to allow the destruction of habitat despite protection.

Much would depend on where and how much habitat was set aside. Much would depend on the sufficiency of funding. Still, it is a start and you have to start somewhere. One thing is certain, we should start now.

The Conversation*This sentence was updated to include the other contributors to the report.

Don Anton, Professor of International Law, Griffith University

This article was originally published on The Conversation. Read the original article.

National parks are vital for protecting Australia’s endangered plants

Image 20161114 9077 13dpcxu
There are fewer than a thousand Graveside gorge wattles in Kakadu National Park. Parks Australia
Linda Broadhurst, CSIRO

Norfolk Island, nearly 1,500km from Australia’s east coast, is home to one of the country’s most endangered species, but you probably haven’t heard of it. Clematis dubia, a woody climber with white and hairy flowers, was known to number only 15 mature plants in 2003.

Once common on the island, this clematis illustrates what stands in the way of survival for many of our threatened plants. Around 84% of Australia’s native plants don’t occur anywhere else on Earth.

Threats to our native plants include ongoing habitat destruction, fire, invasive species, more frequent extreme weather events, and declining populations of the animals involved in their pollination and seed dispersal.

Clematis dubia is lucky to call Norfolk Island National Park home. Our national parks are places of beauty and adventure for us to enjoy. They are also a haven for many species.

But life in a national park doesn’t guarantee a species’ survival. Recently we assessed 41 endangered or significant plants that occur in Australia’s six Commonwealth National Parks, to identify ways to help these plants recover.

We found that many of these species don’t occur outside national parks, meaning the parks play a huge role in their conservation. Few of these species have been secured in living plant collections or seed banks, and very few are regularly monitored in the wild.

We have little information on either the impacts of threats or of species biology, which limits our ability to secure these species against further loss.

There were only 15 mature Clematis dubia on Norfolk Island known in 2003. Parks Australia

Threats to plants

Clematis dubia lives in small and isolated populations. It faces many perils of modern life, like invasive weeds. We understand very little of its biology, including how its seeds are dispersed, how long it takes to start producing seed, and even how long it lives.

Another plant we assessed was the Graveside Gorge wattle (Acacia equisetifolia) found in Kakadu National Park. A small shrub, less than a metre tall with small yellow flowers, this wattle is listed as critically endangered.

Fewer than a thousand plants are growing in only two locations about a kilometre apart in a restricted area of the park. There is little information on the basic biology of this shrub.

Like other acacias, Graveside Gorge wattle is probably pollinated by, and provides food for, a variety of different insect species. It probably only reproduces sexually and its seeds might be dispersed by ants and probably germinate after fires. The main threat to this species is fires, especially ones that are too frequent or too intense.

As a safeguard against extinction, Parks Australia has collected seed from the Graveside Gorge wattle, which is now stored in the National Seed Bank at the Australian National Botanic Gardens in Canberra.

Hibiscus brennanii is a vulnerable shrub found in Kakadu National Park. Parks Australia
Jenny Hunter, Kakadu ranger, collecting Hibiscus brennanii seed for the seed bank. Parks Australia

Seed banking can extend the longevity of seeds to hundreds of years, protecting a species from extinction and helping in its recovery should the worst happen. Germination trials at the National Seed Bank help unlock the often complex germination requirements of different species so that they can be regrown from seed.

As a result of trials with Graveside gorge wattle, the Gardens now has a living collection of this species. In Kakadu, Parks Australia is protecting the two wild populations by planning protective burning to create longer intervals between fires and reduce the likelihood of severe fires.

Protecting plants

Seed banking and living collections are two of the strategies we recommended to safeguard populations of threatened plant species. Some species may also benefit from establishing new populations outside national parks, similar to the management strategies used for vertebrate animals.

We also recommend surveying all endangered plant species in national parks that are not currently part of a formal monitoring program or that have not been surveyed within the past two years.

Finally, realising the gaps in our knowledge of the biology of and threats to many of Australia’s threatened plants, we recommend partnering with researchers and NGOs with restoration experience to draw on available scientific and on-the-ground knowledge.

And what of Norfolk Island’s endemic climbing clematis, Clematis dubia? Along with the low number of individuals, competition from weeds is a major threat to the survival of this species, so conservation efforts by Parks Australia have involved intensive weed control work, particularly to deal with the invasive guava plant.

Recent searches in likely habitat have revealed an additional 33 plants, a mix of adults and juveniles. Happily, new seedlings are now showing up in areas where guava has been removed, improving the future prospects for this species.

The ConversationThe report Constraints to Threatened Plant Recovery in Commonwealth National Parks was funded by the Australian Government through the Threatened Species Commissioner, Gregory Andrews. It was authored by researchers at the Centre for Australian National Biodiversity Research, a joint initiative between Parks Australia’s Australian National Botanic Gardens and CSIRO.

Linda Broadhurst, Director, Centre for Australian National Biodiversity Research, CSIRO

This article was originally published on The Conversation. Read the original article.

Still here: Night Parrot rediscovery in WA raises questions for mining

A group of four birdwatchers from Broome has photographed Australia's most mysterious bird, the night parrot, in Western Australia.

Image 20170329 1677 1gf9cz1
The photo that confirms the Night Parrot’s existence in Western Australia. Bruce Greatwitch, Author provided
Robert Davis, Edith Cowan University

The Night Parrot is unquestionably one of Australia’s most enigmatic, elusive and enthralling species. The final frontier of Australian ornithology, this cryptic parrot eluded dedicated expeditions to find it for nearly half a century.

Last week, a momentous chapter in the Night Parrot story was written, with the first photograph of a live Night Parrot in Western Australia. The photos come in the wake of several other recent sightings, including the parrot’s rediscovery in Queensland in 2013.

Despite media reports, the parrot has never been officially listed as extinct, with sporadic evidence of its existence throughout the 20th century.

But now we know for sure that the parrots are alive and found across the continent, we can move on to making sure they remain so in the future.

Mystery bird

We know that Night Parrots favour spinifex or tussock grasslands, often close to inland wetland systems. But the areas of potential habitat are vast throughout inland Australia.

The Night Parrot has been listed as endangered in the Action Plan for Australian Birds since 1992. It is listed as endangered under federal legislation.

It has never been listed as “presumed extinct” or “extinct”. Reliable ongoing reports and the well-known cryptic nature of the species meant that the ornithological community considered it likely to have survived, albeit incredibly hard to spot.

The Night Parrot has been known to exist in WA since at least 2005, when a colleague and I clinched the first peer-accepted sighting in recent Australian history during an environmental impact assessment for the Fortescue Metals Group (FMG) Cloudbreak mine.

Fortescue Marshes, where the Night Parrot was first seen again in WA in 2005. Robert Davis

This was by no means the first sighting of Night Parrots in WA, with regular and reliable reports since at least the 1980s. But until 2005 none had provided sufficient detail to eliminate other possibilities. Further sightings have been monitored at another location in the arid zone since 2009 and that work is pending publication.

The significance of the latest find is immense. A dedicated team of birdwatchers (Adrian Boyle, Bruce Greatwich, Nigel Jackett and George Swann) has confirmed the existence of a population in WA. The discovery, resulting from a well-planned expedition, is the start of a real dialogue about Night Parrot conservation in WA.

The latest record cements the fact that Night Parrots are present at several locations in WA and potentially throughout arid Australia, including in regions rich in mineral resources.

In contrast to the Queensland populations, which have so far been found in national parks and pastoral leases, the WA situation sets up a quandary for how to manage development, Night Parrots and mining.

Mining and conservation

Our 2005 sighting was important because, given the parrot’s endangered status, FMG was required to provide offsets for potential disturbance to Night Parrot habitat. The offsets included avoiding areas of likely habitat on the Fortescue Marshes, and funding follow-up surveys throughout the areas surrounding the proposed mine. These unfortunately did not find further evidence of Night Parrots.

Research offsets from FMG also funded the writing of a national research plan for Night Parrots. This was later followed by on-ground research on Night Parrots at Pullen Pullen Reserve in Queensland, the population found by naturalist John Young in 2013.

Recent developments by other WA resource companies have seldom considered Night Parrots. My personal experience is that surveys usually look for endangered mammals such as Northern Quolls and Bilbies, but rarely search properly for Night Parrots. This is likely due to two main reasons.

The first is the incredibly cryptic nature of the Night Parrot. Clearly the species has evaded detection for so long because it is difficult to find.

The second is what I term “the Thylacine factor”. The only equivalent species in Australia that has the same degree of scepticism and mythology is the Thylacine.

Thylacines have (so far) not been rediscovered. But developers, consultants and regulators take the same attitude to Night Parrot sightings. The parrots are often seen as a mythical animal that doesn’t exist. The idea of looking for them is met with mirth.

Finding the parrots

Recent findings from research by Steve Murphy in Queensland, and other recent work in WA, are slowly providing us with the tools to overcome both of these issues. With better knowledge of their specific habitat requirements, including a need for long-unburned grasslands close to water sources, we can reduce the daunting challenge of Night Parrots potentially existing anywhere that spinifex is found.

Fire is one of the threats facing the Night Parrot. Robert Davis

The recent release of calls from the Queensland population and a new recording of calls from the WA population provide the most powerful tool yet for doing surveys. Playing back the calls can be used to elicit a response from any Night Parrots in the area. The call can also be used to identify calls from deployed remote recording devices.

As more populations are discovered and more evidence becomes available, this will help convince the public and decision-makers that the parrots are (hopefully) found across a wide range and need careful management, despite the difficulty of observing them.

The ConversationLet’s hope government bodies will strongly enforce the requirement to search for Night Parrots in all areas of potential habitat within their known current and historic range. This should ensure that we don’t lose any parrots before they are even found.

Robert Davis, Senior Lecturer in Vertebrate Biology, Edith Cowan University

This article was originally published on The Conversation. Read the original article.

Australian endangered species: White-bellied Frog

The White-bellied frog (Geocrinia alba) is a small frog in the family Myobatrachidae. It occupies an area near Margaret River in swampy depressions adjoining creeks. Threats from altered ecology have made this a critically endangered species of Southwest Australia.

Altered ecology and changing land use have led to a status of 'critically endangered' of extinction. Populations occur on 'private property', exposing the habitat to cattle grazing and—since the 1990s—viticulture and eucalypt plantations. Threats such as fire and cattle can degrade vegetation surrounding the frog's habitat; damming and land clearing for viticulture or planting of introduced tree species alters the hydrology. Research has been undertaken by UWA and CALM. Funding has been allocated to provide fencing to land owners and a reserve connecting the Forest Grove and Blackwood River National Parks to assist the protection of the riparian habitat.

4m5s2nhg 1370473660
The tiny White-bellied Frog lives in the swamps of south-west Australia. Perth Zoo
Dale Roberts, University of Western Australia

The White-bellied Frog (Geocrinia alba) is a tiny frog from south-west Western Australia, inhabiting a range of 130km2 between Margaret River and Augusta. It was only discovered in the early 1980s and described in 1989.

Male White-bellied Frogs call from small depressions in wet soils during the breeding season. These wet areas are formed by seepages in swamps. The eggs are laid in jelly in the same place. The eggs hatch in the jelly and develop into frogs without feeding, relying instead on the yolk in their stomachs.

The White-bellied Frog is one of four Geocrinia species found across south-western Australia’s wetter forest systems. All have similar breeding biology. Its closest relative, the Orange-bellied Frog (Geocrinia vitellina) lives nearby.


The White-bellied Frog is variously listed at different levels. It is listed critically endangered on the IUCN Red List and under the Western Australian Department of Environment and Conservation, and as endangered under the federal government’s EPBC Act.

Perth Zoo

Whichever way you look at it the White-bellied Frog is a species at risk. Over 70% of likely habitat has been cleared and is now unsuitable for the frogs’ specific breeding needs. Its range is heavily fragmented, and movement between populations is low or non-existent. In most of them there are fewer than 10 frogs. It is no longer found in many of the places where this species was found in the early 1980s.


The main threats to White-bellied Frogs are activities that change their habitat, particularly the delicate seepages that they rely on for breeding.

Land clearing fragments the populations of frogs. It also modifies the structure of creeks. Slow-moving creeks with seepages are turned into well-defined channels which are unsuitable for breeding. Plantations of blue-gums have a different effect. By lowering groundwater supplies they cause breeding sites to dry up.

Illegal marijuana crops, which use the same wet soils as the frogs, have also disturbed the habitat. Adding chemicals and nutrients through fertilisers disrupts the growth and development of the frogs. Other agricultural impacts come from grazing, which destroys the seepages, and vineyards, which alter water supplies through damming.

White-bellied Frog tadpoles never leave the nest. Perth Zoo

Amphibian chytrid has been found in White-bellied Frog populations, and is widespread across south-west Australia. Strangely it doesn’t appear to be responsible for declines in White-bellied Frogs.


One of the early management strategies for the White-bellied Frog was to fence off the isolated populations from livestock, allowing them to recover and maintain healthy populations.

Fire is currently excluded from land managed by the Western Australian government, but proper fire management must eventually include burnoffs. Fortunately it appears the frogs can tolerate fire. Experiments show that even if fire reduces numbers locally they do eventually recover.

A frog released back into the wild. Perth Zoo

Perth Zoo has successfully reared frogs. Frogs were raised from wild-collected eggs and released near Margaret River in 2010 and 2011. Nests in the wild suffer from predation and rearing frogs gives the frogs a better chance.

The Zoo has also successfully bred White-bellied Frogs in captivity, a significant achievement given their breeding requirements, and five of these frogs were released at the Margaret River site in 2012.

In 2000 the state and federal governments purchased a large area of private land where a number of frogs were found. This was a major breakthrough for managing the frogs and their habitat.

There’s hope for the White-bellied Frog under climate change too. The species is thought to be seven million years old (using molecular clocks), meaning it has already survived seven million years of climate upheaval. We know that its orange-bellied relative can survive disturbance such as logging, and its likely the White-bellied Frog is the same. This suggests the species will be able to survive disturbance to its habitat caused by climate change.


There is an interesting epilogue to the White-bellied Frog’s tale. In the 1960s and 1970s, before the frog was discovered, large areas of its range was cleared. Paradoxically this vegetation loss may have raised the water table, creating new habitat for the frog, and artificially expanded the range.

The current decline may partly reflect loss of those new populations that arose during land clearing. It goes to show that managing this species and water is a particular challenge in a region with diverse land uses.

Perth Zoo

Pictures courtesy of Perth Zoo. Perth Zoo has successfully reared, bred and released White-bellied Frogs into the wild to increase their numbers.

The ConversationThe Conversation is running a series on Australian endangered species. See it here

Dale Roberts, Winthrop Professor, University of Western Australia

This article was originally published on The Conversation. Read the original article.

Australian endangered species: Western Swamp Tortoise

Adult males do not exceed a length of 155 mm or a weight of 550 g. Females are smaller, not growing beyond 135 mm in carapace length or a weight of 410 g. Hatchlings have a carapace length of 24–29 mm and weigh between 3.2 and 6.6 g.[5]

The colour of the western swamp turtle varies dependent on age and the environment where it is found. Typical coloration for hatchlings is grey above with bright cream and black below. The colour of adults varies with differing swamp conditions, and varies from medium yellow-brown in clay swamps to almost black with a maroon tinge in the black coffee-coloured water of sandy swamps. Plastron colour is variable, from yellow to brown or occasionally black; often there are black spots on a yellow background with black edges to the scutes. The legs are short and covered in scale-like scutes and the feet have well-developed claws. The short neck is covered with horny tubercles and on the top of the head is a large single scute. It is the smallest chelid found in Australia.

The only other species of freshwater tortoise occurring in the southwest of Western Australia is the narrow-breasted snake-necked turtle (Chelodina M. colliei) . It has a neck equal to or longer than its shell, making the two species from south west Western Australia easily identifiable.

The first specimen of the western swamp turtle was collected by Ludwig Preiss in 1839 and sent to Vienna Museum. There it was labelled "New Holland" and was named Pseudemydura umbrina 1901 by Seibenrock. No further collection of specimens was recorded until 1953. Glauert in 1954 named these specimens Emydura inspectata, but in 1958, Ernest Williams of Harvard University showed them to be synonyms of P. umbrina, collected by Preiss

T3jqvg99 1358289627
The Western Swamp Tortoise was rediscovered in the 1950s. Nicola Mitchell
Nicola Mitchell, University of Western Australia

The Western Swamp Tortoise (Pseudemydura umbrina) is Australia’s rarest reptile. Originally it was known only from a single specimen collected in 1839 from an unknown location in Western Australia. No others came to light until the 1950s when a Perth schoolboy found one walking across a road and took it to a wildlife show. Its significance was soon recognised, and Pseudemydura umbrina was resurrected as a living species.

With a maximum shell length of about 350mm, the Western Swamp Tortoise is the smallest Australian freshwater turtle and the only one where males are larger than females. During the winter, spring and early summer they live in temporary swamps, feeding on aquatic invertebrates. After the swamps dry in early summer they aestivate (sleep over summer) in holes in the ground or under leaf litter.

This winter/spring peak in activity is unusual for reptiles. It is also the only turtle or tortoise species where females dig the nest chamber with the fore limbs (rather than the hind limbs). Females usually lay a single clutch of three to five eggs each year. They may live for around 70 years.


The Western Swamp Tortoise is listed as Critically Endangered by international, national and state authorities. The number of tortoises dropped from more than 300 in the mid-1960s to less than 50 in the mid-1980s. Since then intensive habitat management, captive breeding and translocations have increased the number to around 200.


The major threats to this species have been land clearing, swamp drainage and predation by the introduced Red Fox. Its small population size and slow rate of reproduction means that a fire or drought could be a disaster. Its rarity and uniqueness also renders it an attractive proposition for poachers.

The tortoises are also highly vulnerable to climate change. It is not increasing temperatures but declining winter and spring rainfall that is the threat. Harvesting groundwater for agricultural and urban development has limited the flow of water into swamps.

Assisted colonisation may be needed to save the tortoise under climate change. Nicola Mitchell

The tortoise breeds, feeds and grows during the hydroperiod. The hydroperiod is the period that standing water can be found in the swamps. In most swamps rainfall is now the primary source of water. Hatchlings must grow to a critical size before their first summer aestivation. Females will reabsorb their eggs or produce smaller clutches if their feeding opportunities are limited.

A hydroperiod of around six to seven months appears to be ideal for this species. In recent years hydroperiods have declined to around three months. Projections suggest a continued fall in annual and winter rainfall in Perth. There is a very real scenario that the swamps will cease to support a breeding population.


Conservation planning for Western Swamp Tortoises has been at the forefront of conservation practice in Australia. The best habitat was set aside in 1962, captive breeding began at Perth Zoo in 1988, and a recovery team formed in 1990 was one of the first such groups in Australia. More than 500 tortoises bred at the zoo have been released into the wild. All the tortoises are now within predator proof fences or in areas that are fox baited.

Unfortunately, all sites used for translocations offer increasingly marginal habitat because of the drying climate during recent decades. Constant pumping of bore water has been necessary to maintain water levels at Twin Swamps since 2003.

Assisted colonisation has been proposed to keep this species in the wild. From a climatic perspective, south is the logical direction. A project led by the University of Western Australia suggests that the coastal regions of the southwest may provide good habitat under future climate. Controversially, these areas are well outside any likely historical range of this species. Unease about introductions of species is certainly well founded based on experiences in Australia and elsewhere.

However, this species has already been moved to new habitats, including into a “threatened ecological community”. Assisted colonisation may not be such a philosophical leap. Instead, the physical “leap” to a novel habitat requires meaningful engagement with stakeholders, careful site assessment, and adequate monitoring of released animals and their impacts on the biological community.


Long generation times and low genetic diversity means that Western Swamp Tortoises are unlikely to adapt quickly to a changing climate. Human intervention will be necessary to prevent their extinction in the wild.

Current conservation practices show that captive-bred tortoises can be successfully introduced into new areas. Sites that will offer good habitat in the future are urgently required. Fortunately, planning and site selection for “assisted colonisations” is well underway. They may be some of the first conducted for a vertebrate under climate change.

This article was co-authored by Dr Andrew Burbidge who has researched this species for almost 50 years. He is formerly of the Western Australia Department of Environment and Conservation.

The ConversationThe Conversation is running a series on Australian endangered species. See it here

Nicola Mitchell, Associate Professor in Conservation Physiology, University of Western Australia

This article was originally published on The Conversation. Read the original article.

Australian endangered species: Gilbert’s Potoroo

Gilbert's potoroo (Potorous gilbertii), sometimes called the "rat-kangaroo" or "garlgyte", is Australia's most endangered marsupial and one of the world's most endangered mammals. It is a small nocturnal marsupial which lives in small groups or colonies. It has long hind feet and front feet with curved claws which it uses to dig for food. Its body has large amounts of fur which helps with insulation, and its fur ranges between brown and grey; the color fading on its belly. This potoroo has a long, thin snout curving downward that it uses to smell its surroundings; this trait is common in all potoroo species. Its eyes appear to bulge out of its face and look as though they are on an angle and its ears are almost invisible, buried under thick fur. Male and female body types are very similar and are both within the same size range. Adult females range in weight from 708–1205 g (including pouch young where present), whereas adult males range in weight from 845–1200 g.

Zjxvmrp8 1358305745
Gilbert’s Potoroo: rediscovered in 1994 after nearly 100 years. Dick Walker
Elizabeth Sinclair, University of Western Australia

Gilbert’s Potoroo (Potorous gilbertii) is one of four species of potoroo. It has dense grey-brown fur, paler on the underside, with furry jowls, large eyes and an almost hairless tail. It is the smallest extant member of the genus, weighing in at around a kilogram. With a diet of over 90% underground fungi (truffles), it is one of the most fungi-dependent mammals in the world.

Like other potoroos, these animals are mainly solitary, with little overlap in home range between individuals of the same sex, although a male and a female may be found nesting together under the dense sedges in their heathland habitat, sometimes with a young-at-heel. Gilbert’s Potoroos may live ten years and reach sexual maturity at around one year of age. A female potoroo rears one young at a time, but up to three a year, so she could produce well over 20 progeny in her lifetime.


Discovered near Albany in 1840 by John Gilbert, the renowned collector for British taxonomist John Gould, Gilbert’s Potoroos were never widespread. Sub-fossil remains in caves near the southwest corner show, at most, a narrow zone along the moist south coast where the marsupials lived. Rain in most months of the year supports year-round truffles in the soil.

The species was so rare by the early 1900s that it was thought to be extinct – appearing to meet the same fate as its desert-dwelling relative, the Broad-faced Potoroo (P. platyops). Remarkably it was rediscovered on the Mount Gardner headland at Two Peoples Bay Nature Reserve in 1994. However extensive surveys in likely sites along the south coast failed to find any more colonies. The tiny surviving population is now 30-40 animals strong and has been the focus of intensive recovery efforts.


Captive breeding has so far failed to increase numbers of Gilbert’s Potoroo. Dick Walker
As these potoroos prefer to live in dense heaths, the greatest threat to the Two Peoples Bay population and any recovery colonies is catastrophic wildfire. Lightning strikes are common in this area during summer, often without rain to extinguish the fires. The popularity of the area with locals and tourists alike also increases the risk of fire. The rugged terrain and highly flammable vegetation would severely hamper fire-fighting efforts, although ironically the largely inaccessible habitat may have contributed to its survival. Potoroos rarely venture into open habitat, but those leaving cover risk predation by foxes and feral cats as well as native predators.


Gilbert’s Potoroo could be lost in a single wildfire. The recovery strategy focusses on managing this risk by increasing numbers and establishing more populations. Initially, considerable effort went into attempts to breed Gilbert’s Potoroos in captivity. However, this proved unreliable, and efforts turned to assisted reproduction techniques including artificial insemination and cross-fostering using Long-nosed Potoroos (Potorous tridactylus).

Unfortunately, neither of these methods were successful. Meanwhile, regular monitoring of the wild population showed that it remained stable, and new young were born. Failure to find many of these individuals again as adults suggested that most available home ranges were taken and they were unable to establish home ranges.

So the focus of the recovery plan, which continues to protect the existing wild colony (through fox baiting and fire exclusion), shifted to establishing new colonies. With this in mind, a few wild potoroos from Mount Gardner were moved 25 km east to 800 ha Bald Island. Ten potoroos were taken from Two Peoples Bay to Bald Island between 2005 and 2007, with on-going monitoring of the tiny founding population. In 2009, the new Bald Island population had grown to over 25 animals, and six individuals were moved back to the mainland for introduction into a purpose-built 380 ha enclosure from which foxes and cats had been removed. Despite more removals back to the new mainland enclosure, by 2012, the Bald Island population surpassed 60 and there were over 20 within the new enclosure.


While Gilbert’s Potoroo remains arguably the worlds’ rarest marsupial, its survival and recovery so far is due to the remarkable haven provided by Two Peoples Bay, where it continues to breed naturally. Ongoing allocation of funding, particularly by the Western Australian State Government, has allowed long-term recovery goals to be realised.

This piece was co-authored by Tony Friend who heads the Gilbert’s Potoroo recovery project through the Western Australia Department of Environment and Conservation

The ConversationThe Conversation is running a series on Australian endangered species. See it here

Elizabeth Sinclair, Research Associate Professor, University of Western Australia

This article was originally published on The Conversation. Read the original article.

Australian endangered species: Woylie

The woylie is a small macropod, being only some 30 to 35 cm in body length, with a tail around 37 cm long, and weighing between 1.1 and 1.6 kg.[4] The fur of this bettong is yellowish-brown in color with a patch of paler fur on its belly, while the end of its furry tail is dark colored. It has little or no hair on the muzzle and tail. This species has a more slender build and larger ears than its relative the burrowing bettong.

H5jmd4jk 1382426347
Woylie have decline by up to 95% since 2001. Why is a mystery. Flickr/Arthur Chapman
Mathew Crowther, University of Sydney

The introduced red fox (Vulpes vulpes) has had a devastating impact of Australia’s native mammal fauna, particularly on those in the “Critical Weight Range”, between 35 and 5500 grams. Combined with landscape modification due to agricultural practices, changed fire regimes and other introduced species, many of these species have become extinct across much of mainland Australia.

An example of one of these species is the Woylie or Brush-tailed Bettong (Bettongia penicillata). With a former distribution covering large areas of arid and semi-arid Northern Territory, South Australia, New South Wales and Victoria, its natural occurring populations became restricted in the 1970s to three small wheatbelt reserves in Western Australia – Dryandra Woodland, and Tutanning and Perup Nature Reserves.

Woylies are members of the Family Potoridae, all small kangaroo-like marsupials under 3kg, formally known as “rat-kangaroos”. Woylies reach a maximum of 1850g, and are grey animals, with a dark brushy tail. They build basic nests on the ground in or near vegetation thickets, and their diet consists largely of fungi, tubers, bulbs, and seeds. They play an important ecological role through seed dispersal, and increasing soil and nutrient turnover with their diggings.


The woylie has shown some dramatic changes in conservation status. The IUCN listed the woylie as Endangered in 1982, due to its dramatic decline. A review of the conservation status of the woylie undertaken in 1998, lead to its status being downgraded on Western Australian, Australian and international threatened species lists, due to its apparent recovery in response to both fox baiting and reintroductions.

However in 2008, the woylie was again listed as Critically Endangered by the IUCN. This was due to a declining rate in numbers of 25-95% per annum since 2001, leading a 90% decline between 1999 and 2006. Estimations of total decline between 2001 and 2006 were around 70-80%, equating to 8,000-15,000 animals.


The main threats to the woylie were red foxes. One of the reasons they were able to survive in the three remaining reserve areas, was the presence of Gastrolobium plants, which contain monofluoroacetate, the compound present as sodium monofluoroacetate in “1080” toxic baits. These plants both protect the woylies with cover, as well as possibly causing reduction in predators due to secondary poison when the predators eat them.

The successful recovery during the 1980s and 1990s was largely due to intense fox baiting campaigns. Other causes of historical decline were loss of habitat from land clearing, grazing and changed fire regimes. Disease has also been suspected as an agent of decline.

The causes for declines since 2001 have been a mystery, and clearly need more research. Predation by both foxes and cats may be playing a part, as is disease.


The campaign of both intense fox bating and reintroduction into baited areas, and areas surrounded by predator proof fences was successful in the initial recovery of the woylie. From the initial three populations found in the 1970s, woylies were established in an additional 22 locations across Western Australia, South Australia and New South Wales.

As the recent causes of decline are unknown, it is difficult to plan actions for the woylie recovery. As with all declining species, additional research is essential to pinpoint causes of decline. As well as controlling foxes and cats, surveillance monitoring for diseases needs to continue.


The woylie is an example where continual research is needed on wildlife populations, even when we think they are in the clear. Without dedicated researchers, the extent of the recent decline of the woylie would have gone unnoticed. Without continual research-lead conservation of the woylie, the reasons for the decline will remain a mystery.

The ConversationThe Conversation is running a series on Australian endangered species. See it here.

Mathew Crowther, Senior Lecturer in Wildlife Management, University of Sydney

This article was originally published on The Conversation. Read the original article.

Put out water for the wildlife in your garden on hot days

Susan Lawler, La Trobe University
Wildlife need water on hot days. Melanie Thomas, from

Last night I was watering the garden with a hose. It is easy to see how stressed the plants are on a 38 degree day, but then I remembered that the animals in my garden need water too. So I filled some shallow bowls and placed them in quiet shady spots. During a hot Australian summer day, such an act can save a life. A small life, perhaps, but every little bit counts.

I have a small suburban garden but it still supports a range of insects, birds, frogs and reptiles. Whenever we move a pile of wood we disturb some lovely spotted geckos. Even in the city most Australians will have possums moving through the trees and skinks sheltering under the back steps. Suburbs on the edge of town have wombats, wallabies and kangaroos. Birds and insects live everywhere. On hot days all creatures will seek water and shade.

So why not add a routine to your normal gardening chores and put out some water for wildlife? Here are a few hints to ensure that the animals benefit.

Tips for watering wildlife

Use only shallow bowls so small animals do not drown. Alternatively (or additionally) add a few rocks or sticks so they can easily crawl out. Do not use metal bowls as these will become hot and may burn their feet or paws. Place the water in a shady spot, out of the way of human activity and protected from domestic pets.

Birds and tree dwelling animals will appreciate water hung at various levels. You can nail a plastic tub to a fence, or hang a modified water bottle in a tree.
If you are able to set up a hose to mist a shady corner in the garden, you will create a small haven for wildlife. I did this last night with the excuse that the lemon tree needed a good drink anyway.

Don’t worry if you don’t see the animals using your water. It is likely that they prefer privacy and will use it when you are not looking.

On the other hand, if you do see animals showing signs of heat stress, you may have to take further steps.

Caring for heat stressed wildlife

Animals that are suffering from heat stress will behave strangely. Nocturnal animals that are out during the day, tree dwelling animals sitting on the ground, or animals that are lethargic or staggering are all showing signs of stress.

The first concern about stressed wildlife is your own safety. Do not approach snakes, flying foxes, large kangaroos, eagles, hawks or goannas. Your best bet is to contact a trained wildlife carer for advice.

It is a good idea to have the phone numbers of your local wildlife carers handy, or download the wildlife rescue app.

If it is safe to do so, you can assist a heat stressed animal by picking it up in a towel, placing it in a well ventilated box in a cool spot and provide water. Do not feed the animal or handle it more than necessary. The animal may recover enough to release again in the evening, but if not you will need to take them to a wildlife carer or a vet.

Wildlife and bushfires

Unfortunately many Australians now live under the threat of bushfires and face evacuations throughout the summer months. Obviously, fires are bad for both domestic and wild animals. The best thing you can do during an evacuation is to take your dogs and cats with you and leave out plenty of water for wildlife.

If you do find injured wildlife, take them to the vet if it is safe to do so. Never go into a fire affected area searching for injured animals. This is a job best left to trained staff who are coordinated by the appropriate agencies and assisted by volunteers who have had the right training.

The ConversationOn the other hand, all of us can help by putting out water for wildlife. Every little bit helps.

Susan Lawler, Senior Lecturer, Department of Ecology, Environment and Evolution, La Trobe University

This article was originally published on The Conversation. Read the original article.

10 tips for eating local

Image 20161024 26463 1qz4gr8
Farmers markets are one way to find local produce. Farmers market image from
Karen Charlton, University of Wollongong and Amy Carrad, University of Wollongong

Being a “locavore” means choosing food that is grown locally, and is one way that you can help ensure there is more food to go around.

To feed the predicted nine billion people in the world in 2050, the world will need to produce 70-100% more food. This unprecedented increase in food production will require substantial changes in soil management, land cultivation, and crop production.

This cannot be achieved without technological advances that increase crop yield and reduce the need to use nitrogen-based fertilisers. The question is how this can be achieved sustainably, while also tackling climate change.

This is where “eating local” comes in.

What is eating local?

The primary reason why eating local is good for the planet is the reduction in energy resources required for transport and storage. Generally, the further a food has travelled from “paddock to plate”, the greater its impact on the environment. This is because of fuel used in transport and increased greenhouse gas emissions used for refrigerated storage.

The mode of transport matters too. Transporting food by air generates 177 times more greenhouse gases than shipping it.

The global food system lets us eat food from all over the world, all year round. But food miles impact adversely on the nutritional quality of fresh foods, and on the environment.

Yet while eating foods grown close to where we live makes planetary sense, farmers markets and foods grown more sustainably (organically) often carry a price premium, and seem to be targeted to a trendy and wealthy demographic.

The lack of a definition of “eating locally” also raises questions of how to incorporate organic and fair trade produce within the larger sustainability movement, and how to support developing nations.

Global supply chains place great demands on ecosystems and natural resources, and large distances between where food is produced and consumed is often seen as evidence of an unsustainable food system. However, this is not always as straightforward as it appears.

10 tips for eating local

1: Become familiar with foods that are grown or produced locally and what time of the year they are available. Seasonal food guides are available from some fruit markets and online such as one developed for south-east Queensland.

2: Look for local farmers markets, community gardens, food co-operatives and community supported agriculture schemes. Green Connect is one example of a community-supported agriculture scheme operating in the Illawarra region of New South Wales. In some states such as Tasmania, a thriving food tourism culture may encourage consumers to eat locally but this concept has not been replicated in other parts of the country.

3: Grow your own fruit and vegetables and keep chickens in your own backyard, or get involved in your local community garden, and trade produce with neighbours.

4: Read the labels of packaged foods. The new “Made in Australia” labelling on foods makes it easier to determine where the food (and its individual components) has been grown, processed and packaged.

Australia’s origin labelling can help choose food produced closer to home. Australia government

5: Choose less processed foods. Generally, the more processed a food is, the more energy and water it requires in the production process. Replace junk food with fresh fruit, nuts and vegetables.

6: Take the Eco Friendly Food Challenge and get some friends to join you.

7: Cook meals using fresh ingredients rather than purchasing ready-made meals.

8: Ask your food retailers and manufacturers about the origin of the food you are buying. Locate fruit and vegetable retailers, who sell food produced locally.

9: Limit your intake of alcohol and purchase locally-grown alcohol with the lowest food miles possible. If you enjoy a particular beer or wine, contact the manufacturer to learn about their environmental policies and to advocate for more environmentally friendly production methods.

10: The Fair Food Forager app allows you to search for food outlets that adhere to fair and sustainable practices.

The ConversationCreating consumer demand for more locally and sustainably produced food is being led not only by food champion Jamie Oliver’s Food Revolution, but also by our very own Australian Youth Food Movement, whose organisers are passionate about improving the food supply for future generations.

Karen Charlton, Associate Professor, School of Medicine, University of Wollongong and Amy Carrad, PhD Candidate - Public Health, University of Wollongong

This article was originally published on The Conversation. Read the original article.

Prepare for a healthy holiday with this A-to-E guide

Image 20161216 26077 3e3ni2
Most ill health can be avoided on family holidays through research and planning in advance, plus smart packing. from
Irani Thevarajan, University of Melbourne

So your well-earned holiday is finally here. But before you pack your swim gear, magazines and camera, take a moment to think about your health.

Experiencing an illness in a foreign destination can be very challenging. Obviously it will reduce the quality of your trip, but it can also leave travellers with unexpected costs and exposed to a foreign medical system. On occasion, serious complications can follow.

More than nine million Australians travel internationally per year, with most trips undertaken by people between the ages of 25 and 55. The top ten most popular destinations for Australians are New Zealand, Indonesia, the USA, UK, Thailand, China, Singapore, Japan, Fiji and India.

A range of new health problems can be encountered during travel, and existing health problems can be exacerbated. Staying healthy is all about being informed, prepared and sensible.

The leading causes of infection-related illness during travel are travellers’ diarrhoea, respiratory infections and infections transmitted by mosquitoes.

Minimise your chances of experiencing these by following a simple ABCDE.

A: Allow time to prepare

Around popular holiday periods, it pays to allow plenty of time to book an appointment at a travel clinic, or a local medical clinic that offers travel vaccinations.

Some vaccinations have two or three doses and may need four weeks for the course to be completed. Examples include vaccines for Japanese encephalitis and rabies.

If travelling as a family, several visits may be required for preparing children for travel certain destinations.

Indonesia is a popular holiday destination for Australians. rueful/flickr, CC BY

Keep in mind that your travel medicine practitioner may need detailed information about your exact itinerary, your past childhood vaccinations, your medical history and medications. If you have all this information readily available, you can get the most out of your travel consultation.

If you have an existing medical condition, get checked out to make sure it’s being managed as expected. For example, blood pressure medications may need to be adjusted if your blood pressure is either too high or too low.

Yellow fever immunisations and other live vaccines – those that contain active components – should be avoided if you are on medications that reduce your immunity, such as steroids like prednisolone. You may need alterations to immunosuppressive medications some weeks before you travel, or an official letter exempting you from a vaccine that is necessary for entry into certain countries (as is the case with yellow fever vaccine).

B: Behaviour - think about it

Holiday makers often seek to get out of their comfort zones. But it’s worth avoiding the temptation to completely let your hair down: behaviours you would never entertain in the home setting should be avoided in a foreign setting as well. You may also need to alter some of your daily living behaviours.

Traveller’s diarrhoea can largely be avoided by using bottled water in any setting that you consume water, including staying hydrated, brushing your teeth, washing fruit and salads, and making ice blocks and other drinks.

Eat food from venues that appear to adhere to good food hygiene standards – although this can be difficult to judge. Avoid hawker food or street food where items may have been left for long periods at temperatures where bacteria can multiply. When uncertain of hygiene standards, selecting packaged food is the safest choice.

Respiratory infections are common in travellers. If you find yourself in a crowded setting where someone appears unwell and is coughing, create a distance to reduce the risk of being infected. Alcohol-based hand gels are useful to maintain hand hygiene and may protect you from infection due to common colds and other viruses that linger on surfaces.

Smart packing is also important. You should travel with sunscreen and clothes that protect you from sun exposure, and repellent that has an active component to repel insects if travelling to an area where mosquitoes can transmit infections such as dengue, Zika and malaria.

Dengue is a virus transmitted by mosquitoes. echbirmingham/flickr, CC BY

Avoid acquiring a sexually transmitted infection by using barrier protection (condoms) for sexual intercourse.

C: Check safety, and have a check up

Review travel warnings at a reputable website, such as SmartTraveller.

A general check up is advised to ensure your health is stable. Health conditions such as inflammatory bowel disease, diabetes or a lowered immune system may put you at greater risk of travellers’ diarrhoea. Cancer or recent operations can increase risk of developing a blood clot.

Check ups are also a good opportunity to ensure that your vaccinations are up-to-date (see below).

D: Drugs (medications) and vaccines are vital

Medications that can reduce the time or severity of travellers’ diarrhoea are recommended for almost any destination, but particularly when travelling to developing countries where food hygiene standards can be variable. Examples include antibiotics such as azithromycin that treat bacterial causes of diarrhoea, and drugs such as tinidazole to treat parasitic causes of diarrhoea.

Medications such as doxycycline or malarone that protect against being infected with malaria are recommended in some regions within Africa, Asia, South America and the Pacific.

Zika virus infection generally causes a mild illness or no symptoms at all. Pregnant female travellers are advised to avoid travel to a Zika endemic area. Couples planning a pregnancy in the near future should seek advice from a health professional if travelling to a Zika endemic country.

Sunburn can easily be prevented with appropriate clothing, hats and sunscreen. nicksie2008/flickr, CC BY

If you’re travelling to destinations that are above 2500 metres (such Cusco in Peru), talk to your doctor about medications that help prevent or manage altitude sickness.

The normal schedule of vaccinations provided to Australians may not cover you for illnesses found in your holiday destination. Extra vaccinations are necessary for certain destinations.

For example, yellow fever is transmitted by mosquitoes and can cause anything from mild fevers to a severe illness involving multiple organs. Vaccination against yellow fever is required for entry into countries with known yellow fever transmission, and for returning back to Australia if visiting an area of known transmission.

Australians may consider vaccinations against the following diseases before travel to popular holiday destinations:

  • Hepatitis A
  • Hepatitis B
  • Influenza
  • Japanese encephalitis
  • Meningococcal disease
  • Rabies
  • Tuberculosis
  • Typhoid
  • Varicella (Chickenpox)
  • Yellow fever
  • Cholera
  • Measles
  • Polio
  • Tetanus

A full list of countries and recommended vaccinations has been compiled by the USA’s Centers for Disease Control and Prevention.

The ConversationEven if you’re previously been vaccinated for some of these conditions, as time passes you may require boosters to strengthen your immunity.

E: Enjoy your trip!

Relax, you’ve earned a break. from

Irani Thevarajan, Honorary Fellow Nossal Institute for Global Health and Infectious Diseases Physician, University of Melbourne

This article was originally published on The Conversation. Read the original article.

Can you be a sustainable tourist without giving up flying?

Qk6mp54c 1413949977
It should be possible to enjoy your holiday and give the planet a break. lazyllama/Shutterstock
Morgan Saletta, University of Melbourne

Australians love to travel. About 9 million Australians travelled overseas in 2013, 60% of them on holiday. For most tourists, sustainable developmenimate change were probably not high on their list of concerns. But increasing numbers of travellers are concerned about these issues.

Is sustainable tourism possible when tourism accounts for about 5% of global greenhouse gas emissions? If the tourism sector were a country, it would be the fifth-largest greenhouse emitter in the world.

By far the largest source of these emissions is transport, particularly air travel. If the current growth trend continues, these emissions could triple within 30 years.

On the other hand, tourism is incredibly important for local development. Indeed, it offers the only sustainable means of economic development for many developing countries. The UN World Tourism Organization says that tourism will be important in reaching the Millennium Development Goals, which include ensuring environmental sustainability and eliminating extreme poverty.

Exactly how the tourism industry can best help to meet these goals is a matter of debate. However, it seems clear that tourism can make a positive contribution to conservation efforts around the world as well as boosting local economies, although you do have to pump out greenhouse gases to get there.

To travel or not to travel, that is the question

What options does the environmentally concerned tourist have? Is the only responsible action to restrict holidays to places that can be reached by foot, bike, or train? This is certainly not impossible, but it seems unlikely that enough people would be willing to do it to deliver much of an impact. And even if they did, they would deprive many developing countries of the economic and environmental benefits of tourism.

As the UN Environment Programme points out, tourism is one of the main ways to pay for nature conservation and protection. For example, the Orangutan Foundation project in Indonesia’s Tanjung Puting National Park receives US$45,000 (A$51,000) every year from wildlife travel agency Steppes Discovery, a member of the Tour Operators Initiative for Sustainable Tourism Development. This money pays for rangers, the care of orphaned orangutans, and helps fund the park.

So is it possible to enjoy an overseas holiday without contributing to catastrophic climate change? Will our enjoyment of a remote tropical beach literally submerge it under rising sea levels? Is there a balance between the environmental costs of tourism and its benefits? Sustainable tourism arguably means working out what this balance is, and then ensuring we stay on the right side of it.

Carbon offsets: atoning for sins of emission?

Reducing emissions growth projected in a “business as usual” scenario requires changes both in consumer behaviour and in the way the tourism industry is structured.

Carbon-offset schemes are not universally supported, and can be confusingly complex. It is important to understand that there are uncertainties involved in such offset schemes. Because they aim merely to offset emissions rather than reduce them, some people reject these schemes altogether as an option. Some even portray the notion of offsetting as a modern-day indulgence for climate sins.

Some of the criticisms are valid. But purists miss an important point: many activities that are vital to global development goals are unlikely ever to be emissions-free. Tourism is one such activity.

Carbon-offset schemes and the standards by which they are accredited certainly need monitoring and regulation. Ultimately this will need to be done within the framework of a global climate treaty. They are, however, a positive example of business opportunities generated by the demand for low-carbon tourism options.

For the individual tourist, offsetting is increasingly easy and cheap. According to the Qantas calculator, offsetting a round-trip from Melbourne to Los Angeles only costs about A$25 at present. Flights within Australia can be offset for as little as the price of a cup of coffee.

Other tourism activities can be offset too – rental car firm Europcar, for instance, offers offsets purchased though carbon forestry company Greenfleet.

Other companies offering offsets in Australia include Climate Friendly, Carbon Planet, and Carbon Neutral. These firms engage in many types of offset projects including forestry, wind power, and others. Our Planet Travel recommends that consumers look into the types of projects an offset scheme uses, to ensure it is one they support.

Forestry projects, in particular have attracted a lot of attention. It is generally accepted that forest growth can store carbon dioxide, and an analysis of forest carbon sink projects found that this approach can be useful in meeting emissions-reduction targets. However, these projects come with inherent uncertainties: if a forest burns, for example, the stored carbon is re-emitted.

Of course, climate change itself may exacerbate the risk of such fires. On the other hand, timber harvested from forestry projects is safe from bushfires and could still be counted towards the offset total, because it still contains much of the carbon from the tree. All of these different factors will need to be studied carefully, preferably at an international level as part of an agreed climate treaty.

A guilt-free pleasure?

Given that offsets seem to be a way of having one’s cake and eating it too, these schemes should appeal to tourists. By offsetting, they can enjoy their holiday and contribute to global development while at the same time atoning for their sins of emission. Unfortunately, according to Qantas, only 5% of air travellers currently choose to offset.

Sadly, this is an area where consumer choice may not be best and responsible governments as well as corporations need to take the lead. Ecotours, for example, often bundle carbon offsets into their price. It can only be hoped that airlines will follow suit.

The ConversationUltimately, however, what’s required is a clear global framework for reducing emissions, in which offsets can play a part. We need, in other words, an international climate agreement. The devil, as always, will be in the details.

Morgan Saletta, Doctoral Candidate and Graduate TA in History and Philosophy of Science, University of Melbourne

This article was originally published on The Conversation. Read the original article.

‘Sustainable tourism’ is not working – here’s how we can change that

Image 20170418 32703 1lmfri6
Trips to Antartica are part of the ‘last chance’ tourism to environmentally fragile places. Shutterstock
Freya Higgins-Desbiolles, University of South Australia

This year is the United Nations’ International Year of Sustainable Tourism for Development. UN World Tourism Organisation Secretary-General Taleb Rifai declared it gave:

… a unique opportunity to advance the contribution of the tourism sector to the three pillars of sustainability – economic, social and environmental, while raising awareness of the true dimensions of a sector which is often undervalued.

Sustainable tourism comes from the concept of sustainable development, as set out in the 1987 Brundtland report. Sustainable development is:

… development which meets the needs of current generations without compromising the ability of future generations to meet their own needs.

British environmental activist George Monbiot argued that, over the years, sustainable development has morphed into sustained growth. The essence of his argument is that little resolve exists to go beyond rhetoric. This is because environmental crises require we limit the demands we place on it, but our economies require endless growth.

At the moment, economic growth trumps environmental limits, so sustainability remains elusive.

What is sustainable tourism?

Tourism is important to our efforts to achieve sustainable development. It is a massive industry, and many countries rely on it for their economies.

In 2016, more than 1.2 billion people travelled as tourists internationally, and another 6 billion people travelled domestically.

According to the UN World Tourism Organisation, sustainable tourism is:

… tourism that takes full account of its current and future economic, social and environmental impacts, addressing the needs of visitors, the industry, the environment and host communities.

Following on from Monbiot’s criticism, we might ask if efforts are directed at “sustaining tourism”, or instead harnessing tourism for wider sustainable development goals.

No place is off the tourism circuit

Looking at some of the tourism trouble spots, complacency is not called for.

Venice residents have accused tourists of “destroying their city”. Barcelona’s government has passed legislation to limit new tourist accommodation. The Galapagos sees mass tourism’s arrival threatening the iconic wildlife that attracts visitors.

No place is off the tourism circuit, so tourism grows with few limits. Ironically, tourists even want to tour Antarctica to see its pristine environment before it disappears (“last-chance tourism”). This is despite their impacts contributing to global warming and threatening this last wild place.

It is difficult to get a complete picture of the impacts of tourism because no-one is working to build a comprehensive view. So, insights are fragmented.

While we might be sceptical that UN “years” are often more rhetoric than real, we can nonetheless seize the opportunity to make tourism more sustainable.

How can tourism be made more sustainable?

Tourism can be made more sustainable through several achievable measures. Some look to technological solutions so we can continue business as usual. Others highlight conscious consumerism and ideas like slow travel.

But in a world in which growing populations with endless consumer demands are pitted against a fragile environment, we require more concerted effort.

1) Governments must implement policies that foster sustainable development by overcoming the growth fetish. Tourism then should be developed only within sustainable development parameters. Governments must tackle the environmental limits to growth and climate change challenges we confront. Tourism development requires integrated planning. So, we need the government tourism authorities – such as Tourism Australia or state tourism commissions – focused equally on integrated planning as the marketing they currently emphasise.

2) Consumers should be educated for responsible travel choices. For example, few realise that all-inclusive resorts result in economic benefits from tourism leaking out of the host economy back to the home economies of the big multinationals and corporations that often own such resorts (think Club Med). Civics education in schools could educate for responsible travel.

3) Local communities, often treated as only as one stakeholder among the many, must have a right to participate in tourism decision-making and have a say on if and how their communities become tourism destinations.

4) Workers of tourism must have their rights respected and given decent conditions. Tourism should not be allowed to continue as a low-wage and precarious source of employment.

5) The tourism industry needs to assume greater responsibility, submitting to local tax regimes and regulations so its presence builds thriving communities, rather than undermining them. This is increasingly essential as a social license to operate. The industry should also educate its clients on responsible tourism.

6) Non-governmental organisations are essential for reporting on the abuses of tourism, including land grabs, human rights abuses, community opposition and corruption.

The ConversationHarnessing these essential stakeholders in a rigorous agenda for sustainable development, rather than sustaining tourism, would make the UN’s “year” more meaningful.

Freya Higgins-Desbiolles, Senior Lecturer in Tourism, University of South Australia

This article was originally published on The Conversation. Read the original article.

How changing your diet could save animals from extinction

File 20170717 6069 118ptx8
Nearly one-third of tropical animal species face extinction if humans do not curb our growing appetites for beef, pork and other land-intensive meats. The Panamanian golden frog bred by the Vancouver Aquarium in this 2014 file photo may be extinct in its natural habitat. (THE CANADIAN PRESS/Darryl Dyck)
Laura Kehoe, University of Victoria

Transforming large swaths of the tropics into farmland could render almost one-third of wildlife there extinct, new research suggests.

From the Amazon rain forests to the Zambezi floodplains, intensive monoculture farming could have a severe adverse impact on wildlife around the world.

Wildlife would disappear most dramatically in the remaining forests and grasslands of Latin America and Sub-Saharan Africa. The greatest species loss would occur in the Peruvian Amazon basin where as many as 317 species could vanish as a result of agricultural development.

As a doctoral researcher at Humboldt University Berlin, I studied human food consumption, land use and how they affect wildlife. Our research was published July 17 in Nature Ecology and Evolution.

While human population has doubled since 1970, the number of birds, mammals, reptiles and amphibians have dropped by more than half. At its root, this widespread environmental destruction is a result of our growth as a species and increasing food consumption to sustain ourselves.

Although climate change casts a shadow over future conservation efforts, farming is the No. 1 threat to wildlife. We have already altered some 75 per cent of the ice-free land on this planet. If we continue along our current course, we will need to double our crop production to feed a growing world population that demands more resource-intensive foods such as meat and dairy.

Africa at risk

Our research shows that Sub-Saharan Africa is particularly at risk of harmful agricultural development. This region is at the crossroads of economic, demographic and agricultural growth, and minimizing potential effects of agricultural change there is an urgent challenge.

The potential biodiversity loss due to agricultural expansion and intensification worldwide could be as high as 317 species in some locales (left), reaching 31 per cent of known vertebrate animals (right). (Laura Kehoe), Author provided

This becomes more worrying when considering the percentage of land that is currently at risk (i.e. natural but arable) and not protected against future development. Four-fifths of the regions we identify at risk of farmland expansion in Sub-Saharan Africa are unprotected. This is less than half of the 43 per cent protected in Latin America.

Some may mistakenly believe that protecting land from farming is about preserving wildlife habitat while local people go hungry. But it’s not a binary choice. Instead, the goal is to ensure an ample supply of nutritious food while at the same time conserving the most biodiverse and unique places on Earth. This is possible if we try. Knowing in advance what areas are most at risk allows us to better plan for a more sustainable future.

Aside from protecting land, food can be grown at little to no cost to biodiversity. For example, small-holder agro-ecological farming, which uses diverse cropping techniques along with fewer chemical fertilizers and pesticides, can produce large quantities of nutritious food at little to no cost to wildlife.

We need to increase awareness of agro-ecological farming methods and secure local people’s land-holder rights — a crucial step to preventing large foreign corporations from buying up land for monoculture farming.

Communities adopting agro-ecological techniques is a win-win solution that goes a long way towards sustainably feeding the world without pushing wildlife towards extinction.

What can policy makers do?

Current large-scale conservation schemes are based on factors that include past habitat loss and the threatened status of species, but none include the potential for future land-use change. We need to do a better job of predicting future pressures on wildlife habitat, especially because timely conservation action is cheaper and more effective than trying to fix the damage caused by farming. Our research takes a step in this direction.

We also show which countries could do with more support for conservation initiatives to protect land and find ways to sustainably grow food. Suriname, Guyana and the Republic of the Congo are just a few examples, as well as a number of countries in Latin America and Sub-Saharan Africa that are at the centre of high agricultural growth, low conservation investment and very high numbers of species that could be lost due to agricultural development.

Since most agricultural demand comes from richer nations, those countries should provide education and support for sustainable farming methods and locally led conservation efforts.

Map shows countries at risk of high species loss from agricultural development (yellow, bear icon), rapid agricultural growth 2009 to 2013 (orange, tractor symbol), and differing levels of conservation spending. Red represents low spending, high growth, and high species loss. Purple shows high spending, high growth, and low species loss. Green is high spending, low growth, and high species loss. Low values for all three factors are in grey. White represents no data. Dollar figures per square kilometre. Laura Kehoe, Author provided

What can you do?

All of this raises the question: How can we eat well without harming wildlife? One simple step we can all take right now that would have a far greater impact than any other (aside from having fewer children): Cut out the grain-fed beef.

The inefficiency of feeding livestock grain to turn them into meals for humans makes a diet heavy in animals particularly harsh on the Earth’s resources. For example, in the United States, it takes 25 kilograms of grain to produce one kilogram of beef. Pigs have a grain-to-meat-ratio of 9:1, and chickens are 3:1.

Imagine throwing away 25 plates of perfectly good food to get one plate of beef — the idea is absurd and would likely be news if done en masse. But that is precisely what we are all unknowingly doing by eating resource-intensive meat. Articles on food waste seem half-baked when keeping in mind the bizarre grain-to-meat ratio of many of our most popular meats.

There are ways in which farmers can raise livestock with little to no environmental damage, particularly when land is not overgrazed and trees remain on the landscape. Indeed, in some remote areas grazing cattle are a crucial source of food and nourishment. Unfortunately, the industrialized feedlot model that relies heavily on grain makes up the overwhelming majority of the meat in your supermarket. That is the kind of farming that our research investigates.

Livestock and deforestation

To make matters worse, the grain we feed animals is the leading driver of deforestation in the tropics. And it’s a hungry beast: our cows, pigs, and poultry devour over one-third of all crops we grow. Indeed, the grain we feed to animals in the U.S. alone could feed an additional 800 million people if it were eaten by us directly — more than the number of people currently living in hunger.

Livestock quietly causes 10 times more deforestation than the palm oil industry but seems to get about 10 times less media attention. While it’s certainly true that avoiding unsustainable palm oil is a good idea, avoiding eating animals that were raised on grain is an even more effective conservation tactic.

Feeding the world without damaging nature is one of the greatest challenges humanity faces. But with a little foresight, better land governance and some simple meal changes, many of the solutions are at arm’s length.

The ConversationFor wildlife’s sake, go forth and enjoy your veggie burgers.

Laura Kehoe, Researcher in Conservation Decision Science and Land Use, University of Victoria

This article was originally published on The Conversation. Read the original article.

Hugs, drugs and choices: helping traumatised animals

File 20170721 30878 4swma
Interspecies relationships can help traumatised animals form healthy attachments. Sugarshine animal sactuary, CC BY-SA
David John Roland, University of Sydney

Rosie, like a real-life Babe, ran away from an organic piggery when she was only a few days old. She was found wandering in a car park, highly agitated, by a family who took her home and made her their live-in pet. However, after three months they could no longer keep her.

She was relocated to the Sugarshine animal sanctuary, outside Lismore in New South Wales. Kelly Nelder, Sugarshine’s founder and a mental health nurse, described her as “highly strung” and “needy”. It’s not surprising that Rosie, after the loss of two primary care attachments, was unable to bond with the other pigs; she was traumatised.

I met Rosie when I visited Sugarshine, investigating the similarities between human and animal trauma. I spent 20 years as a clinical and forensic psychologist, but as an undergraduate I studied zoology.

My zoology lecturers told us not to anthropomorphise – that is, not to project human qualities, intentions and emotions onto the animals we studied. But now there is a growing recognition of animals’ inner life and their experience of psychopathology, including trauma.

At Sugarshine, traumatised animals are given freedom to find solitude or company as they wish. Interspecies relationships are encouraged, like a baby goat being cared for by a male adult pig, or a rooster who sleeps alongside a goat.

Rosie has been at Sugarshine for a few months now and is more settled, roaming its gullies, farmyards and shelters, although according to Kelly she’s still anxious. She prefers the company of the bobby calves, wedging herself between them as they lie on the ground, getting skin-to-skin contact, falling asleep, and beginning the reattachment process.

Rosie the anxious pig likes to sleep with bobby calves at Sugarshine animal sanctuary. Sugarshine animal sanctuary, CC BY

Understanding trauma in animals

I first made the connection between human and animal trauma on a visit to Possumwood Wildlife, a centre outside Canberra that rehabilitates injured kangaroos and abandoned joeys, wallabies and wombats. There I met its founders, economics professor Steve Garlick and his partner Dr Rosemary Austen, a GP.

When joeys were first brought into their care, Steve told me, they were “inconsolable” and “dying in our arms”, even while physically unharmed, with food and shelter available to them.

But this response made sense once they recognised the joey’s symptoms as reminiscent of post-traumatic stress disorder in humans: intrusive symptoms, avoidant behaviour, disturbed emotional states, heightened anxiety and hypervigilance.

Researchers at the University of Western Australia have developed non-invasive means for measuring stress and mood in animals and are now working with sheep farmers to improve the well-being of their animals. PTSD has been identified in elephants, dogs, chimpanzees and baboons, for example.

Safe, calm and caring

To rehabilitate from trauma, humans and animals need to feel safe and away from cues that trigger the individual’s threat response, deactivating the sympathetic nervous system (the fight-flight response). They also need a means of self-soothing, or to gain soothing from another, activating the parasympathetic nervous system (the rest, digest and calm response).

Progress, from then on, requires the development of a secure relationship with at least one other accepting and caring person or animal. Often, this “other” is someone new. In mammals, including us, this activates our affiliative system: our strong desire for close interpersonal relationships for safety, soothing and stability. We enter a calmer, receptive state of being so that the reattachment process can begin.

Possumwood uses three stages for trauma rehabilitation. Young animals are first kept in a dark, quiet environment indoors to reduce noises or sounds that might trigger their fight-flight response. Here they have the opportunity to develop new kin friendships of their own choosing.

Sedatives (Diazepam and Fluphenazine) are judiciously used in the early stages. Then, the principal carer spends as much time as possible feeding and caressing them to build a new bond.

Kangaroos are social animals, unable to survive in the wild unless part of a mob. So joeys are moved next to a large garage, and then finally to an outdoor yard, gradually being exposed to more kangaroos and creating social bonds. Once a mob grows to 30 or so healthy animals, they are released into the wild together.

The fundamentals are the same

The similarity between animal and human trauma is not surprising. Mammalian brains (birds also appear to experience trauma) share the principal architecture involved in experiencing trauma. The primates, and certainly humans, have a greater capacity for cognitive reflection, which in my clinical experience can be both a help and a hindrance.

My observations of trauma rehabilitation at Sugarshine and Possumwood emphasises the universal fundamentals:

  • A sense of agency (freedom and control over their choices)
  • To feel safe
  • To develop a trusting, caring bond with at least one other creature
  • Reintegration into the community at the trauma sufferer’s own discretion.

The ConversationFor those experiencing social isolation and shame around their trauma – such as returned soldiers or the victims of domestic violence – these principles could not be more pertinent. And for our non-human cousins, like Rosie, we would do well to remember that they do feel, and they do hurt.

David John Roland, Honorary Associate with the School of Medicine, University of Sydney, University of Sydney

This article was originally published on The Conversation. Read the original article.

In defence of bats: beautifully designed mammals that should be left in peace

Image 20150707 1274 8xtxdo
USFWS Pacific/flickr, CC BY
Daniel Horton, University of Surrey

As a wildlife veterinarian, I often get asked about bats. I like bats, and I am always eager to talk about how interesting they are. Unfortunately the question is often not about biology but instead “what should I do about the ones in my roof?”.

With some unique talents and remarkable sex lives, bats are actually one of the most interesting, diverse and misunderstood groups of animals. Contrary to popular belief, they are beautiful creatures. Not necessarily in the cuddly, human-like sense – although some fruit bats with doey brown eyes and button noses could be considered so – but they are beautifully designed.

A flying fox shows off its 50 million-year-old wing design. Duncan PJ, CC BY-SA

Soon afterwards, fossils record another game-changing adaptation in the evolution of most bats, and that is the ability to accurately locate prey using sound (what we call echolocation). These two adaptations early in their history gave bats an evolutionary edge compared to some other mammals, and allowed them to diversify into almost all habitats, on every continent except Antarctica.

Some bats are tiny. Gillles San Martin, CC BY-SA

There are now more than 1,300 different species, divided among 26 different families (compared to fewer than 500 primate species). Indonesia alone has 219 different bat species.

It is not just a quantity though – the variety is astonishing. The thumb-sized bumblebee bat of Thailand is the smallest species, weighing just two grammes. And like other insectivorous bats, it can eat its own body weight in insects every night. At the other end of the scale, some large flying foxes have wingspans of well over a metre and, having lost the ability to echolocate, eat fruit and nectar.

The eerily pale ‘ghost bat’ roosts in the back of caves and will even eat other smaller bats. quollism, CC BY

Everyone knows that some bats feed on blood, but despite the “vampire” myth, only three species actually feed on blood. And these haematophagous bats are only found in parts of South America. They also definitely don’t get tangled in your hair. Bats are far too good at flying.

If thus far I haven’t persuaded you to like bats, you must admit that they are useful. Bats defecate while regularly flying very long distances (up to 350km in one night), making them extremely effective at dispersing seeds. Add to that the fact that some fruit bats live in colonies up to 1m strong, and you can start to imagine their impact. So much so, they have been proven key in reforestation.

Another unappreciated and major role is as pest controllers. The sheer volume of insects that some bats species can eat makes them very effective at suppressing pest insects. Bats reduce the nuisance and disease threat of mosquitoes, and it has been estimated they save the US economy at least $3.7 billion every year through increased crop productivity and reduction of pesticide usage.

A Mauritian Tomb Bat with her pup. Frank.Vassen/flickr, CC BY

Despite their ancient design, they show some remarkable talents. One of these is shared only by several select animals. Bats are vocal learners – able to learn and then imitate sounds even in adulthood. This is likely important for the development of the complex social organisation seen in many bat species. Most surprising of all is the recent revelation that they are also members of an even more exclusive and less salubrious club: animals known to partake in fellatio during copulation.

Bats have had some bad press recently due to their association with infectious diseases, from rabies to Ebola. And they appear able to tolerate some viruses fatal to other species. If anything, that illustrates again why they should be respected, especially as various bat species are also endangered and therefore protected by law in many regions.

The ConversationSo my response to those interested in what to do about the bats in their roof? Leave them alone.

Daniel Horton, Lecturer in Veterinary Virology, University of Surrey

This article was originally published on The Conversation. Read the original article.

Should we move species threatened by climate change?

W3y7m23y 1381965711
New Zealand’s ancient tuatara might need a helping hand to cope with climate change. Flickr/Sheep"R"Us
Tracy Rout, University of Melbourne; Doug Armstrong, Massey University; Eve McDonald-Madden, CSIRO; Hugh Possingham, The University of Queensland; Nicola Mitchell, University of Western Australia, and Tara Martin, CSIRO

Climate change is one of the greatest threats the world’s animals and plants are facing. In fact the world is facing an extinction crisis, which should concern all of us. The major problem with climate change is not so much that climate is changing, but that it is changing faster than species can move or adapt.

One of the solutions is to move species to places with a more suitable climate. But the idea of introducing species to areas where they have never occurred before is controversial, because species introduced to somewhere they’ve never lived could have devastating consequences for the species already there. Just think of foxes, lantana, cane toads and other invasive species in Australia.

So how do we weigh up the costs and benefits? In a new study published today in journal PLOS ONE, we developed a way of finding the answer.

Australia’s species at risk

Moving species threatened by climate change isn’t a new idea. In fact we’ve already moved some, while others are being considered.

One of them is the critically endangered Western Swamp Tortoise from Perth in Western Australia - Australia’s rarest reptile. It currently faces extinction thanks to declining seasonal rainfall, which is drying up the swamps the tortoise calls home. To stop the tortoise becoming extinct, scientists have considered potential new sites far to the south of its home range.

Another species facing climate extinction is the Mountain Pygmy-possum, a tiny mammal that currently resides on three snowy mountain tops in Victoria and New South Wales. As temperatures warm the possum is running out of room to move upwards. Snow cover, and the length of time snow stays on the ground, is decreasing rapidly.

This means the possums come out of winter hibernation earlier, and can’t find enough food. The mountains have also seen an influx of feral predators, which previously found the area inaccessible thanks to snow cover.

Weighing up the costs

It’s far from clear cut which species might benefit from this drastic action, and for which it would be a costly and risky mistake. How should wildlife managers approach the decision of whether to move animals into new areas, or leave them in places that may become uninhabitable for them?

In our study we outlined a framework that can quantify whether the benefit of moving a species outweighs the ecological cost.

The benefit of moving a species is based on the likelihood it will go extinct in its original habitat as the local climate becomes hostile, the likelihood that a breeding population can be established at a new site, and the value or importance of the species.

The ecological cost depends on the potential for the species to adversely affect the ecosystem at the new site. Species are considered candidates for re-location only if the benefit of doing so is greater than the ecological cost.

This decision involves both scientific predictions (what’s the likelihood the species will go extinct in its current range?) and subjective judgements (how do we value the conservation of this species compared to species already living at the introduction site?). Our framework separates these questions out.

The framework is intended to support the revised “IUCN guidelines for re-introductions and other conservation translocations”, which explicitly calls for structured decision-making frameworks for conservation introductions.

Testing on tuatara

We test drove our new framework using the hypothetical case of the New Zealand tuatara which is being considered for relocation from its home on a number of small offshore islands in the north of NZ to the South Island, outside of its current range. The tuatara is the country’s largest reptile and the only surviving representative of an ancient lineage.

The tuatara faces a peculiar threat from climate change. Like many reptiles, the sex of a tuatara is determined by incubation temperature, with higher temperatures giving rise to males and lower temperatures to females. The population from North Brother Island in New Zealand’s Cook Strait is already showing signs of too many males. This is expected to worsen as temperatures increase, putting the population at risk of extinction.

We considered an introduction from the North Brother Island population to a hypothetical mainland sanctuary on New Zealand’s South Island. We used a previously published population model to predict the effect of climate change on the North Brother Island population, and estimated that the current population of 550 tuatara has a 0.43 chance of persisting in 150 years time. If we remove animals to introduce them elsewhere, this slightly decreases the probability to 0.42.

We found that the chance of successfully establishing a new population was good, and that the chance that the new population will impact negatively on the ecosystem was low.

The ConversationTuatara show why it’s essential to have a rigorous framework like this to take the gut instinct and guesswork out of the decision, so we can make smarter choices for conserving species under climate change.

Tracy Rout, Post-doctoral Research Fellow, University of Melbourne; Doug Armstrong, Professor of Conservation Biology, Massey University; Eve McDonald-Madden, Postdoctoral Fellow, CSIRO Ecosystem Sciences., CSIRO; Hugh Possingham, Director ARC Centre of Excellence for Environmental Decisions, The University of Queensland; Nicola Mitchell, Associate Professor in Conservation Physiology, University of Western Australia, and Tara Martin, Senior Research Scientist, Ecosystem Sciences, CSIRO

This article was originally published on The Conversation. Read the original article.

How the warming world could turn many plants and animals into climate refugees

Image 20170215 19595 coz75c
The Flinders Ranges were once a refuge from a changing climate. Shutterstock
Matt Christmas, University of Adelaide

Finding the optimum environment and avoiding uninhabitable conditions has been a challenge faced by species throughout the history of life on Earth. But as the climate changes, many plants and animals are likely to find their favoured home much less hospitable.

In the short term, animals can react by seeking shelter, whereas plants can avoid drying out by closing the small pores on their leaves. Over longer periods, however, these behavioural responses are often not enough. Species may need to migrate to more suitable habitats to escape harsh environments.

During glacial times, for instance, large swathes of Earth’s surface became inhospitable to many plants and animals as ice sheets expanded. This resulted in populations migrating away from or dying off in parts of their ranges. To persist through these times of harsh climatic conditions and avoid extinction, many populations would migrate to areas where the local conditions remained more accommodating.

These areas have been termed “refugia” and their presence has been essential to the persistence of many species, and could be again. But the rapid rate of global temperature increases, combined with recent human activity, may make this much harder.

Finding the refugia

Evidence for the presence of historic climate refugia can often be found within a species’ genome. The size of populations expanding from a refugium will generally be smaller than the parent population within them. Thus, the expanding populations will generally lose genetic diversity, through processes such as genetic drift and inbreeding. By sequencing the genomes of multiple individuals within different populations of a species, we can identify where the hotbeds of genetic diversity lie, thus pinpointing potential past refugia.

My colleagues and I recently investigated population genetic diversity in the narrow-leaf hopbush, a native Australian plant that got its common name from its use in beer-making by early European Australians. The hopbush has a range of habitats, from woodlands to rocky outcrops on mountain ranges, and has a wide distribution across southern and central Australia. It is a very hardy species with a strong tolerance for drought.

We found that populations in the Flinders Ranges have more genetic diversity than those to the east of the ranges, suggesting that these populations are the remnants of an historic refugium. Mountain ranges can provide ideal refuge, with species only needing to migrate short distances up or down the slope to remain within their optimal climatic conditions.

In Australia, the peak of the last ice age led to dryer conditions, particularly in the centre. As a result, many plant and animal species gradually migrated across the landscape to southern refugial regions that remained more moist. Within the south-central region, an area known as the Adelaide Geosyncline has been recognised as an important historic refugium for several animal and plant species. This area encompasses two significant mountain ranges: the Mount Lofty and Flinders ranges.

Refugia of the future

In times of increased temperatures (in contrast to the lower temperatures experienced during the ice age) retreats to refugia at higher elevations or towards the poles can provide respite from unfavourably hot and dry conditions. We are already seeing these shifts in species distributions.

But migrating up a mountain can lead to a literal dead end, as species ultimately reach the top and have nowhere else to go. This is the case for the American Pika, a cold-adapted relative of rabbits that lives in mountainous regions in North America. It has disappeared from more than one-third of its previously known range as conditions have become too warm in many of the alpine regions it once inhabited.

Further, the almost unprecedented rate of global temperature increase means that species need to migrate at rapid rates. Couple this with the destructive effects of agriculture and urbanisation, leading to the fragmentation and disconnection of natural habitats, and migration to suitable refugia may no longer be possible for many species.

While evidence for the combined effects of habitat fragmentation and climate change is currently scarce, and the full effects are yet to be realised, the predictions are dire. For example, modelling the twin impact of climate change and habitat fragmentation on drought sensitive butterflies in Britain led to predictions of widespread population extinctions by 2050.

Within the Adelaide Geosyncline, the focal area of our study, the landscape has been left massively fragmented since European settlement, with estimates of only 10% of native woodlands remaining in some areas. The small pockets of remaining native vegetation are therefore left quite disconnected. Migration and gene flow between these pockets will be limited, reducing the survival chances of species like the hopbush.

The ConversationSo while refugia have saved species in the past, and poleward and up-slope shifts may provide temporary refuge for some, if global temperatures continue to rise, more and more species will be pushed beyond their limits.

Matt Christmas, ARC Research Associate, University of Adelaide

This article was originally published on The Conversation. Read the original article.

Fair winds and following seas: yes, a spider could migrate across an ocean

File 20170802 11397 1599kt9
Hang on, is that a spider floating this way? Andrea Izzotti/shutterstock
Ceridwen Fraser, Australian National University

Today a new paper proposes trapdoor spiders arrived on Kangaroo Island, South Australia, after drifting across the sea from Africa.

Molecular analyses of spiders from Kangaroo Island, other parts of Australia, and Africa show that the Kangaroo Island’s spiders are much more closely related to African species than to other Australian ones. Rough dating of divergences – that is, how long ago different species or groups split apart – suggests that the Kangaroo Island spiders were separated from African relatives long after the breakup of Gondwana (the southern supercontinent), but arrived on Kangaroo Island at least a couple of million years ago (well before humans).

The authors conclude that the spiders must have come to Australia by crossing the Indian Ocean.

So can a spider travel over thousands of kilometres of open ocean? Sure!

There is a lot of evidence that plants and animals can reach new lands by travelling long distances. This usually happens either by drifting across oceans (for example by “rafting” – hitching a ride on floating objects such as uprooted trees or seaweed clumps) or via air travel (blown by strong winds or carried by birds). The evidence has mostly come from genetic studies like the new spider study.

Read more: Antarctica may not be as isolated as we thought

When populations of species on either side of an ocean are genetically very similar, it is reasonable to conclude that there has been some recent movement between them. That’s because DNA changes over time: each time DNA is copied (which happens every time a new cell forms) there is a chance that copying errors will occur. If these errors – known as mutations – are not harmful, they can be copied into later generations. In this way, populations that are not interbreeding gradually drift apart genetically. The result is that populations that have been separated for a long time will be very distinct, whereas those that have been recently connected will be genetically similar.

Dispersal of organisms can happen via wind, oceanic rafting and the movement of animals. For example, migrating birds can carry seeds, insects and other small organisms long distances, generally moving north-south or vice versa. Terrestrial or shallow water marine organisms can raft across oceans on buoyant objects such as kelp, wood and pumice, generally following the paths of ocean currents. Strong winds, such as the easterly equatorial winds and the westerly mid-latitude winds, can transport small organisms aerially or influence rafting events at sea. Photographs: albatross and drift kelp: C. Fraser; Caribbean iguana: Atsme (Wikimedia Commons). Ceridwen Fraser, Author provided

Genetic and observational studies give us strong evidence that long-distance voyages have happened. It might seem incredible that a plant or animal could survive a long trip at sea, or be blown to a new land by a storm, but it only has to succeed every now and then for dispersal to play a big role in shaping global biodiversity.

For example:

  • Ferns probably reached the young Hawaiian islands as spores carried by strong winds. Some spiders are also thought to have blown over to the islands.

  • Many birds migrate long distances each year, and can carry barbed or sticky plant seeds attached to feathers or feet – this mechanism is thought to explain how many plant species reached remote islands.

  • A few years ago, seaweed swarming with living invertebrate animals washed up on a beach in southern New Zealand, and DNA tests of the kelp and the animals showed the voyagers had drifted in ocean currents from islands hundreds of kilometres away.

  • In the 1990s, just after a hurricane, iguanas were found sitting on driftwood on beaches on a Caribbean island that had never before had iguanas on it.

  • Many spiders can travel long distances through the air by “ballooning” – using fine silk threads like a kite or balloon, to catch rides with air currents.

Of course, many plants and animals have remained perched, sedately, on their tectonic plates as they slowly move around the world – not all species have crossed oceans.

Read more: How a warming world turns plants and animals into refugees

Nonetheless, we now know that intercontinental travel is not something that only those that can fly, swim or build canoes can do – and a good thing, too! Rapid environmental change will force many plants and animals to move to new places. Many species are moving toward the poles, or up mountains, as the climate warms.

Being able to move to a new habitat is a survival skill.

The ConversationThe ability to travel is, and has always been, an important part of long-term survival and evolution. But it’s risky, too. Many long-distance trips fail, and the voyagers often perish before finding a new home. These intrepid trapdoor spiders just got very lucky!

Ceridwen Fraser, Senior lecturer, Australian National University

This article was originally published on The Conversation. Read the original article.